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Abstract 

Two sufficient criteria on homometric polytypes are 
derived. They are applied to CdI2. In addition to the 
known pairs of homometric structures, infinite sets 
of other pairs may be constructed. Examples of poss- 
ible pairs of homometric CdI2 polytypes for all space 
groups in CdI2 are given. 

Introduction 

Homometrics are two or more structures that are 
neither congruent nor enantiomorphous, but would 
give identical diffraction patterns. Examples of 
homometric structures are to be expected particularly 
among polytypes. Sufficient conditions have been for- 
mulated for M X  and MX2 structures (Dornberger- 
Schiff & Farkas-Jahnke, 1970; Jain & Trigunayat, 
1977; Ohsumi & Nowacki, 1981). 

Jain d¢ Trigunayat (1977) have formulated two 
criteria for MX2-type structures, a proof of which 
has been given by Chadha (1981). Firstly, a Zhdanov 
symbol consisting of only even digits and its literally 
reversed sequence would be either congruent or else 
homometric. For CdI2 and PbI2 no actual example 
of this kind may exist because of the restrictions in 
the arrangement of molecular sheets in these com- 
pounds (Wahab & Trigunayat, 1980). Secondly, if a 
Zhdanov symbol of a structure consists of only 2's 
and pairs of l 's,  then this structure and its literally 
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reversed sequence are either congruent or else 
homometric. Ohsumi & Nowacki (1981) have given 
a criterion that permits homometric CdI2 polytypes 
to be derived from homometric cyclotomic sets (Pat- 
terson, 1944; Buerger, 1976). In the present paper, 
both the criteria valid for CdI2 are generalized. 

Possible CdI2 structures, homometric according to 
one of the known criteria, have space group P 3 m l  
or P63mc. It will be shown that there may also exist 
pairs of homometric structures with space group 
P ] m l ,  R 3 m  and R3m,  respectively. A pair of 
homometric CdI2 polytypes with different space 
groups is constructed. 

Two theorems on homometrics among polytypes 

Theorem 1. Let PI be a polytype satisfying the 
following conditions: 

(i) PI is composed of two kinds of parallel layers 
.S and T; 

(ii) the origins of S and T may be chosen such 
that there is a straight line through the origins of all 
the layers of P~. 
Let P .  be the polytype whose structure is described 
by the reverse stacking sequence of layers S and T 
in PI. Then the structures of /'i and P ,  are either 
congruent or enantiomorphic or homometric. 

The proof of this theorem is based on formula (1) 
derived by Marumo & Saito (1972) for layered struc- 
tures satisfying conditions (i) and (ii). 
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[F(hkl)l 2= Nsl Fsl 2 + 2 

+ E E NS(S~T")S[ Us[ 2 COS 2¢rtrs(smT.)S 
m n 

+ E E NT(S~T")TI FTI 2 COS 27rlrr(s~r")r 
m rl 

+ E E  ° * Ns(s T )T(FsFT + F*FT) 
m n 

× COS 2¢rlrs(smT.)T, (1) 

Where Fs and Fr  are the layer structure factors of S 
and T layers, respectively. Ns and NT are the num- 
bers of S and T layers, respectively (per period along 
the c axis). Ns(smr.)s is the number of pairs S-S  
separated by m S layers and n T layers, rs(smT.)S is 
the distance between the origins of two S layers 
separated by mS layers and nT layers. NT(S'~T")T, 
NS(S"T.)T , rS(SmT.)T a n d  rT(SmT")T are defined corre- 
spondingly. The equality NS(SmTn)T = NT(SmTn)S holds 
for any combination of m and n in any periodic 
structure (Marumo & Saito, 1972). As the stacking 
sequences of PI and Pn are the reverse of each other, 

N ( ~ ) =  N(~ I), N(T I ) -  N(T II), 

N(~smr.)s = 7kT(II) m "~ " S ( S  T n ) S  

(2) 
N ( I )  _ (I1) T(S..T.)T- NT(SmTn)T, 

( I ) , . .  ( 1 1 ) , . .  ~r(1l) Ns(s T )T= NT(s  T ) S = ' t ' c S ( S r a T n ) T  • 

From (1) and (2) it follows that IF('(hkl)12= 
I F(m(hkl)l 2, i.e. PI and Pn are congruent, enan- 
tiomorphic or homometric. 

According to the approach of Ohsumi & Nowacki 
(1981), a pair of homometric polytypes is derived 
from homometric cyclotomic sets. In Fig. 1 an 
example of cyclotomic sets is given. If any white point 
is replaced by a sandwich layer (AyB) and instead 
of black points sandwich layers (CAB) are taken, a 
pair of homometric polytypes results. More generally, 
for homometric cyclotomic sets the layers S and T 
may be taken instead of white and black points, 
respectively. Thus, a sufficient criterion results: 

Theorem 2. Let PI and Pu be polytypes for which 
the conditions (i) and (ii) of theorem 1 are valid and 
additionally the following conditions hold: 

(iii) S is as thick as T; 
(iv) the distributions of the S layers in PI and Pn 

correspond to the distribution of black points in two 

Fig. 1. The two cyclotomic sets are homometric with each other. 
The first set has a symmetrical arrangement of points, the second 
does not. 

enantiomorphic or homometric cyclotomic sets, 
respectively. 
Then, PI and Pxi are congruent, enantiomorphic or 
homometric polytypes. 

The proof of theorem 2 follows again from (1). As 
the layer S is as thick as the layer T, (1) may be 
simplified to 

IF(hkl)l 2 = Nsl Fsl 2 + NT[ Frl 2 

+ E (Ns(x")s[ Fs[ 2 
M 

+ NT(X")T[ FTI 2) cos 27rl(n + 1)rsr 

+ X  Ns(x.)T(FsF* + F* FT) 
ti 

x cos 27rl(n + 1)rST. (3) 

In (3), X" stands for n layers of any kind. Theorem 
2 is proved if we show that for PI and Pn the corre- 
sponding numbers N in (3) are equal. As the S layers 
in PI and Pu, respectively, are distributed according 
to homometric cyclotomic sets, it follows that 

N(~ ) N(~ x), N (I) . = N O D .  = s(x )s s(x )s. 

The complementary cyclotomic sets describe the dis- 
tribution of the T layers in P1 and PI1, respectively. 
According to Patterson (1944) and Buerger (1976), 
the complementary cyclotomic sets are also 
homometric. Hence, 

N~) N~I), ~,r(I) . ~r(I1) _ 
--" .t,¢ T ( X  ) T  = 1"~ T ( X " ) T "  

In any polytype, Ns(x.)s+Ns(x.)r  = Ns. Thus, 

N ( I )  . = N(g~)X.)T S ( X  ) T  

Application of the theorems to CdI2 

In the simplest case, both layers S and T consist of 
only one molecular layer (sandwich) each: S =  
(AyB), T= (CAB). Then the second criterion of Jain 
& Trigunayat (1977) follows from theorem 1, and the 
criterion of Ohsumi & Nowacki (1981) follows from 
theorem 2. Besides, the criterion of Jain & Trigunayat 
may also be deduced from theorem 2 as the distribu- 
tion of S and T layers corresponds to enantiomorphic 
cyclotomic sets. Thus, the previous section contains 
proofs of the criteria mentioned and shows their close 
relationship. 

All the 20 known pairs of homometric CdI2 struc- 
tures have space group P3ml,  but the criterion of 
Jain & Trigunayat allows pairs of homometrics with 
space group P63mc to be constructed. 

Example 1: Polytypes with Zhdanov symbol 
(221121111)2 and (221111211)2 are homometric and 
have space group P63mc. 

In the following, more complex layers will be con- 
sidered, each consisting of several sandwiches. Fur- 
ther, we suppose that neighbouring layers SS, TT, ST 
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or TS have one common sandwich. The condition 
that the origins of all layers are on a straight line 
means that there is a straight line through cadmium 
ions of all boundary sandwiches between two success- 
ive S or T layers. For the construction of suitable 
examples, the thr notation (Fichtner, 1984, 1983) is 
used. This notation describes any CdI2 polytype as a 
sequence of pairs of neighbouring sandwiches (Fig. 
2). The sequences may only contain letters h, /7 and 
t because of the restriction for CdI2 (Wahab & 
Trigunayat, 1980). As the layers S have to be parallel, 
the total number of letters h and/7 in any layer S or 
T has to be even. 

Example 2: S = h2, T = t2, cyclotomic sets of Fig. 
3. The homometric polytypes are  h6t4h2t 4 and h4t2h4t 6 
with Zhdanov sequences (22)3(11)422(11)4 and 
(22)2(11)2(22)2( 11 )6" 

Example 3: S =  h2, T = ]~2, S2TST2 and S2T2ST. 
Both 24H polytypes, 222123212223 and 
222122232123, have space group P3ml. 

Example 4: S =/Th, T= t3, S3T2ST and S3TST2. 
This is a pair of 102R polytypes with space group 
R3m. The aperiodic parts in the Zhdanov sequences 
are 

(13)3(11)613(11)3 

(13)3(11)313(11)6. 

In this example, the straight line through the origins 

S 

% 

% 

S 
% 

% 

% 
% 

% 

Fig. 2. The thr notation for the description of stacking sequences 
in CdI2-type structures. 

Fig. 3. Simplest example of a pair of homometric cyclotomic sets. 
Black and white points are interchanged. 

of the layers S and T is not perpendicular to the 
layers. 

Example 5: S =  h/Tt, T= th/7, S3TST3 and S3T3ST. 
S and T are centrosymmetric to each other and have 
the same inclination per sandwich. One period con- 
tains eight symmetrically arranged layers. Hence, the 
space group is R3m. The two 144R polytypes have 
the Zhdanov sequences 

(1311)311131311(1113)3  

(1311)3(1113)313111113. 

Example 6: S = (/7h)2, T =  (ht2/7), cyclotomic sets 
of Fig. 1, viz SsT2STST2 and SaTS2TST3. As the total 
number of points in the cyclotomic sets is a multiple 
of three, the polytypes are hexagonal. In each of the 
two layers S and T, the arrangement of sandwiches 
is centrosymmetric. The first cyclotomic set has a 
symmetric arrangement of points, the second not. 
Thus, the first polytype has space group P3ml and 
the second P3 m 1. The Zhdanov sequences of the two 
96H polytypes are 

(13)92(11)213(11)2123132(11)2123132(11)213(11)2123 

(13)72(11)2123(13)32(11)212313(2(11)213)2(11)2123. 

This example demonstrates that homometric poly- 
types may have different space groups. 

Concluding remarks 

In addition to the known pairs of homometric poly- 
types of CdI2, infinitely many other examples may 
be constructed, governed neither by the criterion of 
Jain & Trigunayat nor by that of Ohsumi & Nowacki. 
Compared with observed CdI2 polytypes, the stack- 
ings in examples 1-3 are of moderate complexity. 
Thus, it may be expected that actual examples will 
be found that are not governed by the criterion of 
Jain & Trigunayat or do not have space group P3 m 1. 
The polytypes of example 3 consist of only h2 and/72 
in their stacking sequence. Such polytypes have been 
observed, e.g. 20H14:(22)32123 = h8/72 (Patosz & Gier- 
lotka, 1984) or 40/-/2:(22)621(22)223 = h14/76 (Patosz, 
1983). 

The theorems of this paper may also be applied to 
polytypic substances other than Cdl2. For instance, 
in CdBr2 pairs r of sandwiches and triples /7h exist 
in the observed polytypes. Thus, a pair of homometric 
18H polytypes may exist: S = r, T=/Th, S2TST2 and 
S2T2ST, with the Zhdanov sequences 531333 and 
533313, respectively. 
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Abstract 

A lattice-formula matching technique has been 
developed to be used in conjunction with the NBS 
Crystal Data File [(1982), National Bureau of Stan- 
dards, Gaithersburg, MD] for the identification and 
characterization of crystalline materials. This tech- 
nique is reliable, efficient and highly selective. In the 
first step of the identification/characterization pro- 
cedure, a unit cell defining the lattice is determined. 
The cell is reduced and derivative supercells and 
subcells are calculated. These cells are then checked 
against the NBS Crystal Data File in which all lattices 
have been represented by standard reduced cells. By 
routinely calculating derivative supercells and sub- 
cells and matching against the file of known com- 
pounds, it is possible to find related materials and/or  
to make an identification in spite of certain types of 
errors made by the experimentalists (e.g. missing rows 
of spots on diffraction photographs or the diffrac- 
tometer etc.). Finally, the identification obtained by 
lattice matching is verified using known chemical 
data. Practical experience and an analysis of the data 
in the NBS Crystal Data File have proved that the 
lattice-formula combination is highly characteristic 
of a crystalline material. Since the method is subject 
to precise mathematical techniques, the entire pro- 
cedure can be highly automated. Both the unit-cell 
determination and the identification/characterization 
procedure can be carried out in the same instrument. 
A Fortran program and the NBS Crystal Data File 
are available. 

* Work carded out as a National Bureau of Standards-National 
Research Council Postdoctoral Research Fellow and a JCPDS- 
International Centre for Diffraction Data Research Associate. 

Introduction 

We have designed a lattice-formula matching tech- 
nique to be used in conjunction with the NBS Crystal 
Data File (1982) for the characterization and iden- 
tification of crystalline materials. The NBS Crystal 
Data Center maintains a data base that contains 
evaluated crystallographic and chemical data on 
approximately 60 000 materials. The data fall into the 
following categories: organics, organometallics, 
metals, intermetallics, inorganics and minerals. There 
are two fundamental ways that large crystallographic 
data bases can be used. As a source of critically 
evaluated data, the data base can be used as a basis 
for scientific research, or as an aid to scientific 
research (e.g. to identify unknown compounds, to 
locate certain molecules, to obtain bibliographic data 
etc.). The type of data that can be obtained through 
search and retrieval programs includes chemical 
name and formula, cell parameters and cell volume, 
crystal system, space-group symbol and number, 
density, bibliographic data, plus additional data. 
Since the data base is formatted, many of these data 
items may be searched readily using systems software 
available at a particular institution. However, general 
systems software will not be adequate for certain types 
of information search and retrieval operations. One 
such example is the identification of unknown com- 
pounds by matching unit-cell parameters and, if avail- 
able, some chemical data. Although simple in prin- 
ciple, lattice-formula matching is a complex operation 
that requires a specialized scientific background in 
order to design a practical computer search algorithm. 

Three relatively recent developments have given 
the lattice-formula method for compound iden- 
tification great potential as a routine analytical tool. 

Firstly, automated methods to determine a unit cell 
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